Homogenization of the mantle by convective mixing and diffusion
نویسندگان
چکیده
Mantle convection stirs and homogenizes the subducted oceanic lithosphere with the convecting mantle. Convective mixing stretches and thins the subducted oceanic crust from an original thickness of 6 km to a thickness of 2 cm or less. The thinned, subducted oceanic crust can be observed as pyroxenite bands in high-temperature peridotite massifs. On the scale of centimeters, the bands are destroyed by diffusive processes. In this paper, the homogenization of the subducted oceanic crust with the depleted mantle is modeled by considering the combined problem of thinning and diffusion at a stagnation point. A layer of different composition from the surrounding material is thinned by normal strain until its identity is destroyed by diffusive processes. Thinning dominates the destruction of a layer if ka 2/D > 1, where k is the strain rate, 2a is the initial layer thickness, and D is the diffusivity. Diffusion dominates if ka2/D < 1. Our results indicate that the mantle is homogeneous at the centimeter scale. This conclusion is insensitive to variations in the strain rate and the diffusivity, and it is supported by isotopic studies of high-temperature peridotite massifs. Variations in isotope ratios in MORB can be attributed to the imperfect homogenization of the MORB source region.
منابع مشابه
The statistical upper mantle assemblage
A fundamental challenge in modern mantle geochemistry is to link geochemical data with geological and geophysical observations. Most of the early geochemical models involved a layered mantle and the concept of geochemical reservoirs. Indeed, the two layer mantle model has been implicit in almost all geochemical literature and the provenance of oceanic island basalt (OIB) and mid-ocean ridge bas...
متن کاملGeomagnetic dipole moment collapse by convective mixing in the core
[1] Convective mixing in the fluid outer core can induce rapid transient decrease of the geomagnetic dipole. Here we determine rates of dipole moment decrease as a function of magnetic Reynolds number following convective instability in a numerical dynamo and in axisymmetric kinematic flows. Our calculations show that mixing flows induce reversed magnetic flux on the core-mantle boundary throug...
متن کاملThe Effect of Depth-dependent Viscosity on Convective Mixing in the Mantle and the Possible Survival of Primitive Mantle
The effect depth-dependent viscosity has on convective mixing and sampling (or degassing) of primitive mantle beneath ridges is explored in two-dimensional models. Higher relative viscosities in the deep mantle decrease convection velocities and strain rates and prolong the residence time of material in the deep mantle. If the average viscosity of the lower mantle is at least 100 times the visc...
متن کاملDroplet collision mixing diagnostics using single fluorophore LIF
A novel droplet mixing measurement technique is presented that employs single fluorophore laser-induced fluorescence, custom image processing, and statistical analysis for monitoring and quantifying mixing in confined, high-speed droplet collisions. The diagnostic procedure captures time-varying fluorescent signals following binary droplet collisions and reconstructs the spatial concentration f...
متن کاملFlow Over an Exponentially Stretching Porous Sheet with Cross-diffusion Effects and Convective Thermal Conditions
This article investigates the influence of cross-diffusion on the viscous fluid flow over a porous sheet stretching exponentially by applying the convective thermal conditions. Velocity slip at the boundary is considered. The numerical solutions to the governing equations are evaluated using successive linearisation procedure and Chebyshev collocation method. It is observed from this study that...
متن کامل